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SUMMARY

A review is given of recent work on boundary layers in electrically-

conducting fluids. This includes a discussion of the differences between

ordinary boundary layers and plasma boundary layers with special reference

to the new dimensionless parameters for the magnetic case, including those

which arise from the microscopic structure of the fluid. The convection of

cu'rrent and vorticity along magnetic field lines by the Alfven wave mechanism

is shown to be the principal new propagation mechanism in m-gnetohydro-

dynamic buundary layers. Recent work in inertial boundary layers, channel

flows, wakes, and electrode boundary layers is summarized.
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LIST OF SYMBOLS

B magnetic induction

B °  magnetic induction due to external currents

B- magnetic induction due to induced currents

By component of B normal to wall

E electric field

e charge of electron

h Debye distance (Eq. 2. 12)

current density

K magnetic diffusivity, (poa
)

k Boltzmann's constant

mean free path

-i ion mean free path

electron mean free path

L characteristic length

me electron mass

M Mach number

MA flow velocity divided by Alfven velocity, Eq. (2. 8)

MH Hartmann number, LB V v

n distance normal to plane of Alfven wave

n e  electron number density

ni  ion number density

na atom number density

p pressure



r Prandtl number

r Coulomb radius, Eq. (2. 9)

R V  viscous Reynolds number, VL'/V

RM magnetic Reynolds number, p. a VL

S interaction parameter, aB L/pV

T temperature (°K)

Te  electron temperature

T A  atom temperature

t time

a U A  velocity change across Alfven wave

a U H  velocity change across Hartmann layer

V mass averaged velocity

V e  mean electron velocity

V. mean ion velocity

V a  mean atom velocity

V A  Alfven velocity, B/V/PPo

V vector differential operator

V B vector differential operator which operates only on B

6 H  Hartmann layer thickness, Eq. (3. 8)

6 Alfven wave thickness

6 V  viscous layer thickness,T

C magnetic Prandtl number, Eq. (2. 7)

Co vacuum electric- permittivity

X thermal conductivity

P o vacuum magnetic permeability
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Kinematic viscosity

w vorticity

p mass density

pe charge density

Cr electrical conductivity

T~i  mean time of ion elastic collisions

Te mean time of electron elastic collisions

TE  mean time of electron collisions for energy equilibration
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I. Introduction

While the physical conditions under which a plasma may be created

or maintained cover many orders of magnitude change in the particle density

and temperature, the plasma boundary layers which we shall discuss can

exist only under the limited conditions for which the plasma may be treated

as a continuum in the usual fluid-mechanical sense. This limitation reflects

in part the tendency of aerodynamicists to move from the familiar to the less

familiar by the extrapolation of existing understanding and in part the possi-

bilities of the practical application of magnetohydrodyna-mics (MHD). The

plasma jet, MHD generator, MHD propulsion motor, MHD flow meter and

other devices are already sufficiently prbactical to require a more complete

understanding of their operation, an understanding which can probably be

acquired by the extrapolation of known techniques (such as boundary layer

theory). This should not blind us to the fact that only a limited region of the

plasma state is being subject to scientific and engineering scrutiny--a state

of affairs which cannot be considered to be satisfactory.

In the classical sense, a boundary layer is a region of the flow into

which disturbances diffuse frorp boundaries, carrying mass, momentum and

energy (including magnetic energy). From a practical point of view, a boundary

layer is the region which "insulates" the flow from its boundaries, and in many

plasma devices the boundary layer provides the mechanism for containment

of the high temperature gases. In this respect, a magnetic field may be

considered tc be a bounding surface, and therefore, a source of disturbances

as well as a mechanism for containment. It is this point of view which will be

found most helpful in understanding MHD beuwdary layers.



In some plasma devices an electric current must pass from a solid

boundary into the fluid. The detailed mechanism by which electrical charges

flow from the fluid to the wall are not well understood and appear to be highly

specific to the wall properties and chemical state of the plasma. Thus,

boundary layers on electrode surfaces have received very little attention,

reflecting the generally unsatisfactory state of our understanding of electrical

discharges in continuum flows. In one sense this lack of concern on the part

of aerodynarnicists for the problem of current emission is justified, for the

plasma sheath which forms at bounding surfaces is not a boundary layer in

the ordinary sense of fluid dynamics, but is more aptly described as a problem

in surface electro-chemistry. Nevertheless, it is to be hoped that this problem

will not continue to be ignored.

The major part of this paper will be devoted to a discussion of MHD

boundary layers. Section II deals with the scaling laws appropriate to viscoas

MHD flows, while Section III is concerned with the basic mechanism of

diffusion of vorticity and current. Section IV is a summary of present under-

standing concerning the principal types of MHD boundary layer problems,

including turbulent boundary layers, In Section V we discuss some plasma

boundary layers in which magnetic effects are absent.

II. Scaling Laws

The interaction of a conducting fluid with an electromagnetic field

must be characterized by a larger number of dimensionless parameters

than is needed for an ordinary fluid flow. The bewildering variety of these

new parameters is the result, not of an attempt to inflate the currency of
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dimensioh7 2Malysis, but to select those groups which most aptly describe

the principal effects in a particular problem. As an example, consider the

conservation of mass and momentum of an incompressible, viscous, electrically

conducting fluid:

V - V = 0 (Z. 1)

p + yV V- V Vp +jx B + pP V (2.2)

together with Maxwell's equations for the electromagnetic field:*

8BV x E =- a--t- (2.3)

V xB- o (2.4)

and Ohm's law for the conduction of charge:

j = a (E + V x B) (2. 5)

Following the usual arguments, the viscous Reynolds number, R VL/V, is

the ratio of inertia force to viscous force in a steady flow as determined from

Rationalized inks units will be used throughout.
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the second and last terms of Eq. (2. 2). By a sinilar argument, the ratio

of magnetic force (j x B) to inertia force is found to be a B 2 L/p V a S when

Eq. (2. 5) is substituted into Eq. (2. 2). S is often termed the magnetic

interaction parameter. Alternatively, one might compare the ratio of

magnetic force to viscous force, thereby defining the Hartmann number,

MH - LB a/p v . Naturally, R,, S and M. are not independent, but are

related by MI = R S.

In an inviscid flow the interaction parameter, S. measures the effect

of the magnetic forces on the flow. For an MHD boundary layer, however,

it would seem more appropriate to compare the relative effects of the magnetic

and viscous forces, in which case the Hartmann number is more appropriate,

especially for fully-dev loped laminar channel flow for which the inertia force

is zero. Nevertheless, in some boundary layers where the free stream flow

disturbance is measured by S, it is customary to retain this parameter as

descriptive of the boundary layer flow as well.

In inviscid flows it is often important to distinguish between the component

(Bo) of magnetic field caused by currents external to the flow and the component

(B') induced by currents flowing within the fluid. If one retains this distinction

and combines Eqs. (2. 4) and (2.5) to write Ohm's law as:

x .B' = goa [E+ Vx (I'+ Be)] (2. 6)

then the condition that B' be much less than B0 (and thus that Bo should appear

in the definitions of S and MH), is that Iao a VL - am<< 1. The magnetic

Reynolds number, Rm, thereby describes the effect of induced currents on

the applied magnetic field, and specifies the condition under which the magnetic
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field may be considered to be only slightly perturbed, irrespective of

whether or not the flow is viscous.

With respect to MI-IJ boundary layers, it ca, be expected that three

independent parameters, such as Rv, Rn , and S, w-l be pertinent in specifying

the nature of the flo%. In some degenerate cases, such as the semi-infinite

flkt plate or the Rayleigh problem where no characteristic length, L, exists,

one must use the two ratios:

R m = , o v (2.7)

MA Rm 
p U(2.8)

E , called the magnetic Prandtl number, is the ratio of the viscos diffusivity

(v) to the magnetic diffusivity (K ( o ) ) and MA is the ratio of the flow

velocity to the Alfven velocity (VA B/-pT). It will be seen below in

Section III that both of these parameters arise naturally when the MHD equations

are recast in the form of diffusion equations, and that they can be interpreted

physically as the ratio of diffusion times and flow times, respectively.

In all the preceding we have ignored the effect of compressibility,

whose existence would introduce another degree of freedom and the usual

parameter, Mach number. With the benefit of hindsight, it appears that the

effect of compressibility within the boundary layer is not greatly different from

what is ordinarily the case, and does not greatly alter our previous conclusions

concerning the effect of the magnetic field.
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We have patently ignored the electric field in our order-of-magnitude

analysis, and it plays no part in the dimensionless parameters so far

considered .- is is a result of the fact that E may be eliminated between

Eqs. (2. 3; and (2. 5) and will only influence the flow through conditions at

the boundary. For example, in channel flows E appears in the "loading

parameter", E/VB, and in other problems determines the boundary values of
aB

jor -

The point of view so far maintained is one which describes the flow in

terms of continuum conservation laws and phenomenological transport

effects. It is equally important to delineate the limitations imposed by the

microscopic structure of the plasma. To do this without an extensive

discussion of kinetic tneory is difficult, and we shall be content to emphasize

only the salient points which are most pertinent to boundary layers.

If we adopt as the basic microscopic length the Coulomb radius, r,:

2
r M e (2. 9)47 okT

that is, the distance of separation of two atomic charges of potential energy

equal to kT, then the mean free path,i. of the charged particles is:

(nr 
"  

(2, 10)
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except for a logarithmic factor not ordinarily much different from unity.

For a continuum description of the plasma motion, it is certainly necessary

that L >>.

The lack of distinction between the conduction current in the Ohm's

law of Eq. (Z. 5) and the total current f Eq. (2. 4) implies the usual

assumption that the charge density, Pe' is so small that the convection

current can be neglected, thal is,

Pe(. n)

For this to be so, the geometric scales L, should be greater than the Debye

distance, h, which is the distance over which the maximum possible charge

density (n e e) may cause a potential difference kT/e:

_/o kT I/

-(47r r n e) (. 1)

By combination of Eqs. (2. 12) and (2. 10) we find that

h n e 
r 3  

/
- 37 / (2. 13)
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that is. the Debye distance is always less than a mean free path whenever

the plasma can be considered to be a perfect gas (voluma per molecule much

greater than r 3). Thus, charge separation imposes a less stringent condition

than that of the continuk'm assumption.

At electrode surfaces there may be considerably more energy than kT

available to a charged particle. The sheath which forms at such surfaces will

have a thickness comparable to that obtained by replacing kT/e in Eq. (2. 12)

by the electrode potential drop, provided this does not exceed the mean free

path. Except in non-continuum flows, these sheaths will not affect the fluid

motion within the boundary layer.

It is possible to replace the transport coefficients v and a in the

exprescions for R, S and M. by their values from mean free path theory

2
n e C (2. 14)

me

so that these parameters contain explicitly a microscopic length in a fashion

which emphasizes the rnicrQscopic structure of a plasma. More to the point,

however, is the modification to Ohm's law (Eq. 2. 5) which results from the

fact that the electron, ion and neutral particle mean velocities ( Ve Vi and V

respectively) may be appreciably different. Momentum gain by the electrons

due to their electric field may be equated to their momentum loss due to
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collisions with the ions:

n e me (V -V -%i
-n ee (E)+ ee x B) = ) (2.15)

Te- -e e

Now the body force, j x B, must be applied to the heavy particles, and a

fraction, na/(ni + na), of this force must be transmitted from the ions to the

neutral atoms by collisions between the latter:

n (j 3) = i V.)

7a.___ - 7m a (2. 16)(ni +na ) i

If the mean velocity of the heavy particles is defined by:

(n i + na) V = ni V + na Va (2. 17)

then the revised Ohm's law obtained by combining Eqs. (Z. 15), (2. 16) and

(2. 17) is:

w T
j =oa E + V xB) j xB

we ,) wT1i) ina
+B' n +ha, (jxB) xB (2.18)

-9-



The second term on the right side is the Hall field which results from the

finite value of the electron-ion collision frequency compared with the electron

cyclotron frequency, we . The third term is an ion slip field caused by the

relative motion of the ions and atoms, but is absent when the plasma is

completely ionized (na = 0). For a slightly ionized gas, the ion slip field

is comparable to the Hall field when wi Tia is approximately one.

In our discussion so far we have ignored energy conservation. For an

incompressible fluid, the variation of temperature in the boundary layer will

affect the flow pattern only through changes in the transport coefficients. The

coupling in a compressible flow is more direct because of the additional varia-

tion in density. Nevertheless, the principal new effect on the macroscopic

scale would by the joule heating (j /a per unit volume) which must be conducted

to the wall or the free stream. One may compare the ratio of the joule heating

to the heat diffusion (X V 2 T) terms in the energy equation, obtaining

joule heatin g  M)2 (2. 19)
heat diusion =pr (MH

in which the Prandtl number (Pr
) 

and Mach number (M) are introduced a: is

to be expected in compressible, heat-conducting flows.

It is not our purpose to discuss the transport proptrties of plasmas,

except insofar as they will affect the behavior of boundary layers. It is

sufficient to point out that, as a gas becomes ionized, the thermal conductivity

increases due to the presence of the light electrons while the viscosity decreases

for high degrees of ionization because the Coulomb cross section is much larger

than the r.eutral atom cross section. Thus, the thermal boundary layer thickness
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is much greater than the viscous layer thickness in a completely ionized gas.

On the microscopic scale we can again expect the redistribution of

energy to modify the classical situation in a manner similar to the modifica-

tion of Ohm's law occasioned by the redistribution of momentum between the

ions, electrons and neutral particles. In particular, the joule heating is an

energy added to the electrons which must be shared quickly with the particles

with which they collide if the electron temperature (Te) and heavy particle

temperature (TA) are to be very nearly the same. If TE is the mean time

for electrons to lose their thermal energy kTe, then

.2 n e k (Te-TA)a A

or T = ( w re
) 2 

M (2.20)
A i 7e)

If energy is lost by elastic collisions of frequency Te
-

1
, 

then TE=mie/me

bec;cuse of the disparity in mass, and non-equilibrium temperatures will

exist only if Hall effects are also important. If inelastic collisions are

effective, then usually TE < m i Te/me and temperature equilibrium is more

likely to be obtained. Whether or not a two-temperature model must be used

within the boundary layer therefore depends quite critically upon the magnetic

field strength (through We T e) and the ratio of elastic to inelastic electron

cross sections. Thus, one additional microscopic parameter must be

introduced under these circumstances.

As is the case for boundary layers in dissociated gases, cooled plasma

boundary layers will recombine ions and electrons either within the boundary
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layer by gas phase recombination,. or at the wall by surface recombination,

The diffusion of ion-electron pairs towards the wall proceeds by ambipolar

diffusion in which the high diffusivity of the electrons induces an electric

field which douhles the inherent diffusivity of the ions through the neutral

gas in the vicinity of the wall. Since the electrical conductivity of the

boundary layer gas is very sensitive to the degree of ionization when the

latter is less than a few percent, there may again be strong coupling between

the effects of diffusion and recombination on one hand and the distribution of

electric current within the boundary layer on the other. It is possible that

the joule heating can produce ionization (and hence a source of diffusing

ion-electron pairs) by purely equilibrium thermal effects or by virtue of

supe:heating of the electrons. (We will leave it to the reader to define the

appropriate parameter for the ratio of ionization source to ambipolar

diffusion). On the whole, one may expect that many of the techniques used

in the dissociating gas boundary layer may be adopted for this case as well.

In the foregoing we have attempted to show how MHD boundary layers

involve several additional similarity parameters (RM , S, ... ) which can

be incorporated in the usual manner in the continuum analysis, and also

microscopic parameters (W T, TE/Te,. ... ) which usually necessitate a

reformulation of the classical statements such as Ohm's law, energy con-

servation, etc. Within this framework it is possible to treat the extremes

of liquid metal flow in a tube and flow of a partially ionized gas through a

strong magnetic field adjacent to a cold wall which "de-ionizes" the gas

by wall recombination. While the former is more amenable to analysis,

the latter is of great practical importance and must undoubtedly be under-

stood more thoroughly than is presently the case. Most of the work
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reviewed below is much more closely related to the former, rather than

the latter, problem.

III. The Diffusion of Vorticity and Current

One way to characterize the difference between an ordinary boundary

layer and an MHD boundary layer is to compare the processes of diffusion

of momentum and magnetic field energy. To simplify this analysis, let

us consider a two-dimensional incompressible flow with co-planar velocity

and magnetic fields. The current, vorticity, and electric field (neglecting

Hall effects) will be normal to the plane containing V and B. By taking the

curl of Eqs. (2. 2), (2. 4) and (2. 5), we find:

,a 4 . V VV I (B'V)j (3.1)

_9 T + V.- V j e (B V)w +-3-- VB (Bv) xV (3.2)- v vz To - - '"o - -

The lefthand side of either equation expresses the usual balance of diffusion

and convection along streamlines, while the righthand side is a source term

which is proportionate to the convection of the complementary quantity

(j orw ) in the direction of B. It is this convection of vorticity or current

along the magnetic field lines which distinguishes the MHD from an ordinary flow.

* The last term, which also equals - 2,u0 - I VV (V- V) x B , is identically zero

for the Alfven wave and Hartmann boundary layer discussed below, and also

if V is proportional to B. For small R and constant B ° it may be neglected.

In the following discussion it will be considered negligible.
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A possible solution to Eqs. (3. 1) and (3.2) for tha special case

of P = Kis oneforwhichVr °  j + V . Eq. (3. 1) may then

be written as:

I a-- + (V + A) (3.3)

which expresses the propagation of a diffusing disturbance with a velocity

- + VA and is therefore an Alfven wave. In MHD boundary layers the

boundary conditions on j and w generally do not permit their being every-

wheie proportional in the ratic V , so that there will be more disturbances

than Alfven waves alone. Nevertheless, we mist expect that Alfven waves can

be excited within the boundary layer and thereby carry away energy and

momentum.

When K / P , then V j / Fp w everywhere within the Alfven

wave, but the current and vorticity art integrally related by:

O ] j dn = wdn (3.4)

which is equivalent to the statement that the ratio of the velocity change

across the wave to the magnetic field change (both changes being parallel

to the front) equals VA/B. Thus, by Eq. (3. 4) the ratio of total vorticity

to tota. current in an Alfven wave is P .

From an aerodynamic point of view, the propagation of vortex and

current elements along magnetic field lines can be understood by noting

that the force - V x w on a vortex convecting with a velocity V can be
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balanced by a force j x B provided V = yAand vo 0j 
=  

T W

that is, the current and vorticity are coincident and move with the

Alfven velocity.

An interesting example of the diffusion of vorticity and current

within a boundary layer is that of the Hartmann boundary layer which

forms on a flat plate having B perpendicular to the plane of the plate.

Assuming the flow to be steady and to depend only upon the distance

y normal to the plate, Eqs. (3. 1) and (3. 2) become:

d + B y dj -o (3.5)
dy -UY

2 BKdj y dw 36

dy o = 0 (3. 6)

Because of the symmetry of the plane problem, B is constant and w and j

are given by:

(3.7)
K

where 6 KH = -/VA (3.8)
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Thus, the Hartman boundary layer thickness, 6H, is the usual diffusion

layer thickness for a stationary source in a fluid of diffusivity 1fiZ7 flowing

with a velocity VA. In this sense the ,orticity and current are convected

toward the wall with the Alfven velocity and diffuse away from the wall with

the geometric mean diffusivity 1,f .

One may use this picture to understand the development of an MHD

boundary layer on an infinite flat plate suddenly set into motion (Rayleigh

problem). In the non-magnetic case, the vorti'ity diffuses outwards forming

a boundary layer of thickness . =, F5 . In the MHD case, there is a

tendency for vorticity to convect towards and away from the wall with the

Alfven velocity as well as to diffuse away from the wall. After some time,

a portion of the vorticity originated by the plate motion convects away from

the wall in an Afven wave while another portion establishes a steady state

balance between convection toward the wall and diffusion away from, the wall,

that is, forn .- a Hartmann boundary layer.

he relative strength of these two effects may be estimated by

applying the rule that the total current which flows in the Hartmann boundary

layer must return in the Alfven wave (assuming an insulating plate)-

6
H JH = 

6 AjA (3.9)

The velocity change across the Alfven wave (6 UA) is related to the velocity

change across the Hartmann layer (A UH) by:

a UA A 6A (3. 10)

A CH H
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Using Eqs. (3. 4), (3.7) and (3. 9), this may be evaluated as:

A UHA H (3. i 1)

Thus, for small magnetic Prandtl number (E), the Alfven wave propagation

may be neglected when studying boundary layers on surfaces with a magnetic

field normal to the surface.

Eqs. (3. 1) and (3. Z) are the basic boundary layer equations for plane

flows. They are sometimes linearized with respect to the magnetic field

by assuming V to be Bo . V when RM <<I, in which case they reduce to:

- - Vi 0 ( .II

at-+ V -V ) ( + V'V q2) : (VA.V)20

For 1. >> v (i. e. , 1 < 1), within the viscous boundary layer Eq. (3. 12) may

be simplified by ignoring the terms A V - V compared to Kv 2. Either

or both of these simplifications are commonly uzed in the literature.

The ques'ion of MHD wakes which propagate along the magnetic field

lines, even in the upstream direction if VA > V , has r.ceived considerable

attention. In some cases the flow is considered inviscid ( Y= 0) and the dis-

turbance originates frorn currents induced at the surface of a body which

disturbs the flow. This might be classified as an inviscid magnetic boundary

layer which, in the most general case, will be the source of Alfven waves

spreading into the flow. It is also possible to consider the complementary

case, a viscous, superconducting boundary layer (K = 0) in which the roles
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of j and w are interchanged in accordance with the symmetry of Eqs.

(3. 1) and (3. 2).

For a plasma, the value of e is found to be

3 o% x/ (L3a41.2x 104 T 3/2 ) I -a(3136 n 7n .j (3.713

where n e is the electron density in particles per cubic centimeter.

Because of the steep temperature dependence of both p and a , C << I

for low temperatures (T < 105 at ne = 10 16) but E >> 1 at high temperatures.

However, the conditiona under which e >> 1 for a plasma generally imply

such strong magnetic fields that the continuum MHD assumptions no longer

hold.

IV. MHD Boundary Layers

The MHD Rayleigh problem, a particular case of which was discussed

above, was first treated by Rossow4 7 
for the case of c = 1. However, the

boundary conditions on the electric field used by Rossow were not physically

meaningful, having arisen through a misapprehension concerning "moving"

and "stationary" magnetic fields. 49 A proper solution for a superconducting

plate has been obtained by Chang and Yen
7
, and a further discussion is given

by Willians. 56
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The corresponding Stokes problem (oscillating infinite plate, B

perpendicular to the plate), was solved by Ong and Nicholls
4 0 

for e << 1

and RM << 1. More complete solutions were obtained by Hide and Roberts 
1

and Axford
2 

for other limiting cases.

The incompressible flow over a semi-infinite flat plate with B

parallel to the flow was shown by Greenspan and Carrier
1 4

,6 to involve

an upstream wake if V < VA so that steady solutions exist under such

circumstances only for a finite plate. 19 Asymptotic solutions for large
11

or small c were given by Glauert. For this configuration, the disturbance

to the magnetic field is caused by the displacement effect of the viscous

boundary layer.

The magnetic Blasius problem with B perpendicular to the wall has

been discussed by Fay9, who pointed out the significance of the Hartmann

layer, and related incompressible flcws have also been considered. 41, 58

More attention has been given to variable a hypersonic boundary layers
4 ' 44,45

and compressible boundary layers. 31,32,34 In the former case, Bush
4

found two ?dssible solutions under some circumstances, probably due to

the very strong dependence of a upon the tenperature, which peaks in the

center of the hypersonic boundary layer when the wall is cooled. Kerrebrock26,27

and Napolitano and Pozz138 have discussed flat plate boundary layers with

B parallel to the wall but perpendicular to the flow. Kerrebrock27 
also

considered the case of a current flowing into the fluid from the plate (electrode).

Because of its great practical interest, the MHD boundary layer at the

stagnation point of a blunt body having B normal to the surface has been very

thoroughly studied. Rossow
4 6 

showed that the heat transfer to a cylinder:

36would be reduced by the magnetic field. Meyer pointed out that the
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principal effect of the magnetic field was to alter the inviscid flow,

thereby reducing the stagnation point velocity gradient and, hence, heat

transfer. A discussion of the inviscid flow calculation and summary of

the heat transfer effects have been given by KempZ
4 Z5, but the inviscid
I8

flow calculations have been subject to some debate. Recent developments
23 3

include an incompressible solution, extension to rarefied gas flow,

57 Bs5 hssonta
and an attempt to find solutions for large RM. Bush has shown that

the reduction of a within a cooled stagnation point boundary layer causes

an overshoot in the velocity profile and a lesser reduction in heat transfer

than would be the case for constant a. This overshoot, which is caused

by the fact th; t the pressure gradient at the stagnation point is unaffected

by the magrtic field, has been discussed by Lykoudis. 35

The simolest channel flow is Couette flow, which was treated by

Bleviss
3 

for a variable property hypersonic flow. Tao 5 4 
considered the

incompressible time-dependent Codette flow which is related to the

Rayleigh problem. Hartmann type channel flows have been investigated by

Shercliff
5 0 

for the case of circular pipes and by Globet
z 

for the case of an

annulus. The time-dependent channel flow has been investigated by Lundgren,

Atabek and Chang. 30 In the st-.ady flow, the Hartmann number is the

primary parameter defining the flow while the Reynolds number is also

involved in the unsteady flow.

Very little attention has been given to Hall effects. Fay
9 

has shown

that the Hall current causes a cross-flow in the Hartmann boundary layer.

Sutton and Sherman
5 Z 

considered Hall effects in Poiseuille flnw and also

found the same cross-flow due to Hall currents. The principal effect of
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permitting Hall currents to flow appears to be that of reducing the elec-

trical conductivity approximately by the factor, i + (we Te)
2

Studies of MHD boundary layer stability have shown, in general,

that the magnetic field has a stabilizing effect. For a flat plate boundary

layer with B parallel to the flow, Rossow
4 3 

and Arkhipov found that the

minimum critical Reynolds number more than doubles for an interaction

parameter somewhat less than unity. For the corresponding free boundary

layers, which are always unstable in the absence of a magnetic field, the

flow may be stabilized for a finite wave number by a sufficiently arge

magnetic field
8 

and is absolutely stable
1 3 

for all RV if E > I and V < VA -

For Poiseuille flow with B parallel to the flow, Stuart
5 1 

found a sixfold

increase in the minimum critical Reynolds number for S = 0. 10. When

B is perpendicular to the wall, the minimum critical Reynolds number

also increases with increasing MH., 
9 

approaching a value of 50, 000 MH

when MH >> 1. (The experimental value of RV/MH at which transition occurs

was found by Murgatroyd to be about 250. Since RV/MH is the value of the

viscous Reynolds number based on the Hartmann thickness, it would appear

that in the experiments the principal effect of the magnetic field is to alter

the basic flow rather than to stabilize it.

Most of the approaches to turbulent MHD flows have been speculative

in nature, 20,37,55 being patterned after classical analyses of turbulence.

Kovasznay
2 8 

has investigated the resistivity of a turbulent plasma in which

the current paths are greatly lengthened by the random V x B field,

and the turbulent energy is provided by random j x B forces. It was
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suggested by Lykoudis 3 3 
that transition to turbulence in channel flows

will occur when the Reynolds number of the Hartmann layer exceeds

that of the laminar sub-layer (about 200) in a turbulent flat-plate boundary

layer. This hypothesis is in reasonable agreement with Murgatroyd's

experiments.

The general discupsions of wakes
15 -

17 have been concerned with

the propagation of Alfven waves originating from the surface of a finite

body, and make use of the magnetic equivalent of the Oseen approximation.

Sears
4 8 

has discussed magnetic boundary layers, but no solutions ol such

problems for R M not small have been obtained. MHD jet flowZ
2 

and natural

convection flow
4 2 

have recently been studied, at least within the boundary

layer approximation.

V. Electronic Boundary Layers

Boundary layers in plasmas with no magnetic field present arc much

more nearly like ordinary boundary layers. The principal interest in such

boundary layers lies in the effects of the presence of electrons on the thermal

conductivity, which might considerably enhance the heat transfer. 9 An

experimental study of the increase in heat transfer due to the passage of a

current through such a boundary layer has been made by Fay and Hogan, 10

who found that the inc2 ease at either cathode or anode was proportional to

the current. Talbot
5

.. has analyzed the plasma sheath inside a stagnation

point boundary layer on a Langmuir probe, but no experimental data is

available.



VI. Conclusion

In surveying the progress to date, one is struck by -the comparative

richness of The theoretical aoayses of plasma boundary layers as compared

to the paucity of experimental evidence. As noted previously, this reflects

the rela.tve case of extrapolating existing boundary layer techniques as

opposed to developing an entirely new set of laboratory experiments and

-echniqies. While one might be tzmpted to conclude tat -our theoretical

uoderstandizg nf the problem is far ahead of our laboratory experience, it

-s more likely than not thst we have been analyzing the wrong problems. For

the variety of physical phenomena exhibited by plasmas is certainly ro less

than that to be seen in ordinary fluids, and quite possibly is even more

extensive and of greater practical utility,. It seems highly unlikely .aat an

adequate understanding of fluid plasma behavior can be manufactured from

the ingredients of classical fluid mechanics and electromagnetic theory alone.

In addition to an increased emphasis on ex-verimental research, one

woald hope for a better uderstanding of the microscopic processes which

play such an important role in transport properties and the tendency toward

maintenance of thermodynamic equilibrium. Be L suse of the difficulty of

creating and maintaining a plasma, one is inevitably forced to work under

marginal circumstances which make necessary a quantitative knowledge of

those processes by which energy is lost and the plasma degraded.

Finally, one must be prepared for more constructive concepts of

plasma dynamics if such seem useful. Only in a very limited sense is a

plasma an anisotropic, electrically-conducting fluid. It might, for example,

be more convenient to consider it to be a system of hydromagnetic waves,



for which an appreipriate kinetic theory and macroscopic conservation

laws must be devised. Given such alternatives, the problem of boundary

effects would undoubtedly acquire a different sign~ificance.
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